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Abstract- This study aims to forecast inflation volatility in South Sulawesi Province using the GJR-GARCH model 

optimized by a Genetic Algorithm (GA). The GJR-GARCH model is employed to capture asymmetric effects in 

inflation volatility, while the GA is used to optimize parameter estimation and achieve globally optimal solutions. 

The results show that the GJR-GARCH model optimized with GA produces lower Root Mean Square Error (RMSE) 

and Mean Absolute Percentage Error (MAPE) compared to the standard GJR-GARCH model, indicating superior 

predictive performance. These findings suggest that integrating GJR-GARCH with GA enhances forecasting 

accuracy and provides a promising approach for modeling economic time series with nonlinear and heteroskedastic 

characteristics, which can support policymakers in monitoring and managing inflation risks. 
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I. INTRODUCTION 

Investment is an economic activity undertaken by individuals or groups to allocate funds with the aim of 

increasing wealth or capital. In Indonesia, the capital market has experienced significant growth in line with the 

rising public interest in becoming investors. This trend is driven by needs that go beyond basic necessities and the 

expectation of improved future welfare through investment returns. As an alternative to real investment, the capital 

market offers a variety of instruments, with stocks being among the most favored by investors [1]. 

Shareholders, whether from corporate or government sectors, often take into account certain macroeconomic 

variables when assessing stock value. Some of the key macroeconomic variables in this context include the inflation 

rate, interest rate, exchange rate, and money supply. These variables play a significant role in influencing stock 

market performance, both in developed and developing countries. Among these variables, inflation is often 

considered a primary factor due to its widespread impact on the overall economy, including the stock market [2]. 

Having been identified as one of the main macroeconomic variables affecting stock market performance, 

inflation has become a central focus in various studies conducted in both developing countries like Indonesia and 

advanced economies. Inflation exerts a broad impact, one of which is its associated social costs. In general, inflation 

can negatively affect a country by reducing consumers’ purchasing power in the domestic economy. This negative 

effect extends to the stock market in the form of unexpected price fluctuations, which increase uncertainty regarding 

expected stock returns [3). 

According to [3], inflation refers to a general rise in the prices of goods and services that are essential to the 

public, or a decline in the purchasing power of a country's currency. When inflation increases uncontrollably, the 

value of money tends to decrease. A high rate of inflation should be given serious attention due to its potential 

economic consequences, such as creating instability, slowing economic growth, and increasing unemployment [4]. 

In Indonesia, inflation is a persistent issue at both national and regional levels. In South Sulawesi, historical data 

show fluctuating inflation rates from 2007 to 2023, influenced by factors such as commodity prices, logistics costs, 

exchange rates, and interest rates. These fluctuations reflect inflation volatility, a critical aspect in understanding risk 

and uncertainty in economic forecasting. 

In this context, understanding the behavior of inflation rates becomes crucial. As a key macroeconomics 

indicator, which represents a financial time series commonly used to evaluate economic stability and support the 

formulation of monetary and fiscal policies [5]. However, in analyzing financial time series data such as inflation, a 

common issue encountered is heteroskedasticity, where the conditional variance is not constant over time. This 

violates the assumption of homoskedasticity often relied upon in classical econometric models. 

According to [6], revealed that conditional variance has a significant role in the volatility clustering phenomenon, 

where small price changes are usually followed by other small changes, while large price changes tend to be followed 
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by subsequent large changes . The main challenge in analyzing this phenomenon is heteroskedasticity, a condition 

where the standard error is not constant over time, reflecting fluctuating volatility and forming clustering patterns [5]. 

To address this issue, the Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model is applied to 

capture time-varying volatility, resulting in more accurate risk estimation and forecasting of inflation dynamics. 

However, the GARCH model is characterized by the fact that the volatility response to a shock is symmetric, 

whether the shock is positive (good news) or negative (bad news). The asymmetric reaction in the volatility process 

to unexpected shocks is a key characteristic in financial  time series. This phenomenon, known as the leverage 

effect, suggests that the conditional variance of inflation rates is often more affected by negative news than positive 

news [7]. The GARCH model cannot handle this asymmetry effect effectively. Therefore, to overcome the presence 

of leverage effect in stock return data, the GJR-GARCH (Glosten Jagannathan Runkle-GARCH) model is used, 

which is a variation of the GARCH model that can capture the asymmetry effect in volatility following  positive and 

negative shocks. 

The parameter estimation process of the GARCH model is very complex and nonlinear. Therefore, genetic 

algorithm-based parameter estimation is used to obtain the optimal solution [8]. Genetic algorithm (GA) is an 

optimization, machine learning method inspired by the theory of genetic evolution, seeking the best solution by 

mimicking the process of natural selection and reproduction [9]. The essence of  GA is to find the best solution by 

exploring many areas of the parameter space, then selecting the one with the greatest probability [8]. This is 

particularly important in GARCH models, where the parameter space can be very complex. 

Inflation volatility forecasting is crucial for economic planning and policy-making, especially in regions like 

South Sulawesi, where economic dynamics can be complex. The GJR-GARCH model, an extension of the GARCH 

model, is particularly effective in capturing asymmetric volatility, making it suitable for inflation data where 

positive and negative shocks may have differing impacts. The GJR-GARCH parameters are usually estimated using 

the MLE method, which can potentially result in bias. Genetic algorithm, as a global optimization method, offers a 

potential solution to overcome this problem [9].  

This study aims to test whether the GJR-GARCH model estimated using genetic algorithms can provide better 

volatility forecasting results compared to traditional models in the context of inflation data. Thus, this research is 

expected to contribute to the development of more accurate inflation volatility models and provide useful insights for 

policymakers in formulating effective strategies for inflation-related risk and ensure economic stability. 

II. METHODOLOGY 

The data used in this study are secondary data that can be accessed on the BPS South Sulawesi websites. The 

data taken in the form of  monthly data on South Sulawesi Inflation during the period January 2007 to December 

2023. 

1. Time Series 

A time series is a sequence of observed values collected over a certain period, generally at equal intervals [10]. 

Time series are often associated with the forecasting of specific characteristics for future periods. Forecasting is a 

technique used to estimate future values by considering both past and present data [11]. 

2. Autoregressive Integrated Moving Average 

The ARIMA model is a non-stationary time series model with order p refers to AR order, order d to 

differencing, and order q to MA order.. The form of the ARIMA model equation is contained in the following 

equation: 

������� � 	
����� 			 �1 � ��� �⋯� ������ � �1 � 	�� �⋯� 	
����� 							 �� � ������ �⋯� ������ � �� � 	����� �⋯� 	
							�1� 
because �� � �� � � 	equation (1) can be written as follows �� � � � ������� � �� �⋯�������� � �� � �� � 	����� �⋯� 	����
												 	�� � �� � ������…� ��������� � 	����� �⋯� 	����
 																																				�2�	 
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With (�) being the AR(p) operator  and 	�(�) being the MA(q) operator . This model is used for time series data 

that has been differentd or already stationary in the average, d is the number of differencing processes performed. 

Suppose the order� = 0 , the ARIMA model (�, �, �) formed is also known as the Autoregressive Integrated or ARI 

model (�, �) . If the order is� = 0 , the model is Integrated Moving Average or IMA (�, �) . If the order is� = � = 0 

with differencing� = 1 , the ARIMA model (0,1,0) is called a random walk model [12]. 

3. GARCH (Generalized Autoregressive Conditional Heteroskedasticity) Model 

The ARCH (Autoregressive Conditional Heteroskedasticity) model was first introduced by Engle (1982) to 

handle the case of heteroscedasticity in time series data, especially in data that has high volatility (9). The ARCH 

model is used to volatility model with the assumption that the current conditional variance (�²) is influenced by the 

variance in the previous period. The ARCH model was developed by Bocllerslev  into Generalized Autoregressive 

Conditional Heteroskedasticity (GARCH) [7].  

The GARCH model expands on the ARCH model by including the lag of the conditional variance itself, in 

addition to lags of the squared residuals. GARCH models make it possible to capture long-term dependencies in the 

variability of time series data.  In the GARCH model, the residual variance is not only related to the residual 

variance in the previous period, but also with the squared residuals of the past period. The GARCH (p,q) model is 

as shown in the following equation: 

��� � �� � ���	���� �⋯� ���	���� �  ������ �⋯�  
���
� 																																											�3� 
Where , ���	����  is the ARCH component at time " � 1  ,  � is the constant in the GARCH component,  ���	����  is the ARCH component, and  
���
�   is the GARCH component. 

If data has different response characteristics to a shock (positive shock or negative shock) then GARCH 

cannot be used. This aspect is important in a financial context where volatility is often higher after negative shocks. 

The solution is to use the asymmetric GARCH method. The asymmetry effect or often called the leverage effect is a 

phenomenon where volatility tends to increase more after a negative shock (price decrease or depreciation) than 

after a positive shock (price increase or appreciation). In return data, if the error value is less than zero, the 

estimated return will be greater than the original return value. This is a bad condition that is often called a negative 

surprise (bad news). Conversely, when the error is greater than zero, it means that the original return value will be 

greater than the estimated return value, resulting in a profit, which is often called a positive surprise (good news) 

[13]. 

4. Glosten Jagannathan Runkle- Generalized Autoregressive Conditional Heteroscedasticity (GJR-GARCH) 

Model 

The GJR-GARCH model was introduced by Glosten, Jagannathan and Runkle in 1993,  is an extension 

of the GARCH model that allows for an asymmetric volatility response to the value of the residuals, known as 

the leverage effect [14]. In general, the GJR-GARCH (p,q) model can be defined as follows. 

 

��� � �� �#���$ � %$���$����$� �# &�
&'�



$'� ���&� 																															�4� 

 

 with ���$ � )1	*+	���$ , 00	*+	���$ . 0 

where ��� is variance of the error  at the time t, �� is a constant, �$ and  & are the parameters of the GJR-GARCH 

model, model, while %* is a parameter that measures the asymmetry in the GJR-GARCH model. �"−* is a dummy 

variable at time " −  , p is the ARCH order and q is the GARCH order [15]. 
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5. Genetic Algorithm 

Genetic algorithm was introduced by John Holland in 1975. This optimization technique is inspired by the 

theory of natural evolution by mimicking the process of natural selection and reproduction. The essence of the 

genetic algorithm is to encode or encode an optimization function into an array containing characters to represent 

chromosomes, then perform processing or manipulation operations by genetic operators, then select based on fitness 

value, with the target of finding an optimal solution based on the problem being sought [16]. This algorithm is 

inspired by the genetic system of living things, which includes production, crossover, and mutation operators by 

applying the principle of natural selection, where the surviving individual is the strongest individual [8]. 

The objective function in estimating GARCH parameters with GA is to get the minimum Root Mean 

Square Error (RMSE) value, namely 

/012 � 3 14 � 5 # ���� � �����6
�'78� 																																								�5� 

Therefore, the fitness function used to evaluate each chromosome is 

:*"5;<< � 1/012																																																											�6� 
with �" the residuals of observations at time t, the conditional variance forecast value �2

 , N is all observations (in- 

sample and out-sample), and n is in-sample observations [17]. 

At each generation, the algorithm explores many areas in the parameter space and selects the one with the 

greatest probability. GA is able to evaluate a number of points in the parameter space simultaneously so that it will 

converge to a globally optimal solution [5]. 

6. Best Model Selection Criteria 

The best model selection criteria are used to evaluate the accuracy of the time series model. The best model 

selection can be done by using the values of the information criterion of the model information. Akaike introduced a 

method used to determine the best model using information criteria known as Akaike information criterion (AIC)  

[18].  AIC is defined as follows: 

>?@ � �2 log D � 2E 																																																																		�7� 
where L denotes the likelihood function, k denotes the number of parameters, and n denotes the number of 

data. The model with the smallest AIC values is called the best model [19]. 

III. MAIN RESULT

The first step in the analysis is to identify data patterns to understand the characteristics and general 

description of the data under study. Descriptive statistical analysis was conducted to see the characteristics of 

monthly inflation data in South Soluwesi Preliminary analysis of inflation rate is presentable in Table 1. 

Table1. Descriptive Statistics of Inflation Rate 

Descriptive Statistics Nilai 

Minimum -1.74 

Maximum 3.89 

Rata-rata 0.4075 

Standard Deviation 0.6573 

Skewness 1.3743 

Kurtosis 5.2024 
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Based on Table 1, inflation ranges from –1.74 to 3.89, with an average of 0.6573, indicating generally 

positive inflation despite occasional deflation. The standard deviation of 1.3694 reflects considerable fluctuations. 

The positive skewness (1.3694) indicates that most values lie below the mean with occasional extreme increases, 

while the kurtosis of 5.1067 suggests a sharp peak and heavy tails, implying the presence of outliers and potential 

ARCH effects. This makes the GARCH model a suitable choice for further analysis. 

 One method to identify the pattern is by plotting the data, as shown in Figure 1, which illustrates the inflation 

rate. 

 
Figure 1 Plot of the inflation  rate 

Based on the graph in Figure 1, the time series appears stationary in its mean, as there is no noticeable 

change in the average over time. Stationarity refers to a condition where both the mean and variance of a time 

series remain constant. However, relying solely on visual inspection has limitations, as interpretations may 

vary between researchers. Therefore, a formal statistical test is required to support this conclusion. To confirm 

the stationarity, the Augmented Dickey-Fuller (ADF) test is conducted, with the results presented in Table 2 

 

Table 2. Uji ADF 

Lag ADF P-Value 

0 -8,77 0,01 

1 -8,01 0,01 

2 -6,43 0,01 

3 -4,58 0,01 

4 -3,36 0,01 

 Based on Table 2, the p-values for lags 0 to 4 are 0.01, which is below the 0.05 significance level. This indica

tes that the inflation data is stationary in its mean, so no additional differencing is required to achieve stationarity. 

1. Identification of ARIMA (Autoregressive Integrated Moving Average) Model 

The identification of the ARIMA model is carried out by examining the ACF and PACF patterns. From the 

inflation rate data, the best-fitting model is identified as ARIMA(2,0,2). The parameter estimation results for this 

model are presented in Table 3. 
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Table 3. Parameter Estimation and Testing Results of ARIMA Model 

Parameters 
Parameters 

Estimation 

Std. 

Error 
G	value P-value �� 0,9753 0,0145 HI. KLL < 0.0001 �� -0,9893 0,0115 �MN. IOP < 0.0001 	� -0,9514 0,0434 -21.880 < 0.0001 	� 0,9155 0,0386 LQ. IOO < 0.0001 � K, PKNO K, KKKLL PHPL. OOH < 0.0001 

 

The ARIMA (2,0,2) model equation for inflation rate is as follows: ST � K, PKNO � K, UINQST�O � K, UMUQST�L � K, UNOPVT�O � K, UONNVT�L � VT 
To examine the presence of heteroscedasticity in the residuals of the averaging model, the lagrange multiplier 

(ARCH LM) test was conducted. 

Table 5. LM Test 

Lag P-value weighted LM ARCH 

Lag [4] K 

Lag [8] K 

Lag [12] Q. IO W OK�KI 

Lag [16] Q. NI W OK�KQ 

Lag [20] M. IN W OK�KO 

Lag [24] U. UO W OK�KO 

Based on Table 5, it can be seen that the p-values from lag 4 to lag 16 are smaller than the significance level of 

0.05. This indicates the presence of an ARCH effect, i.e., heteroskedasticity in the residual variance (conditional 

variance), suggesting that the residual variance is not constant over time. In other words, there is volatility that 

cannot be captured by the ARIMA model, which assumes constant residual variance. Therefore, the residual 

variance is further modeled using the GARCH model. 

2. GARCH Parameter Estimation 

The GARCH model was estimated simultaneously with the previously identified ARIMA model. Model 

selection was based on the significance of  the parameters and the lowest AIC value. The conditional variance was 

modeled using both the lag of the squared  residuals (ARCH order) and the lag of the variance itself (GARCH 

order). Based on these criteria, the best model for the inflation rate is GARCH(2,2), with parameter estimates 

presented in Table 6. 

Table 6. GARCH Model Estimation Parameter 

Models Parameters Parameter Estimation White noise AIC 

GARCH(1,1) 

X 0.0342 

0.2316 1.8377 �� 0.1209  � 0.7818 

GARCH(1,2) 

X 0.0457 

0.2611 1.8408 
�� 0.1549  � 0.1799  � 0.5315 

GARCH(2,1) 

X 0.0457 

0.2288 1.8401 
�� 0.1660 �� 0.0000  � 0.7090 
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Models Parameters Parameter Estimation White noise AIC 

GARCH(2,2) 

X 0.0182 

0.2611 1.8266 

�� 0.3952 �� 0.0000  � 0.0132  � 0.1448 

 The best model of inflation rate is GARCH(2,2) with the following model equation: 

YTL � K. KOML � K. QUNLVT�OL � K. KKKKVT�LL � K. KOQLYT�OL � K. OPPMYT�LL  

The GARCH model addresses the heteroscedasticity problem in the data; however, it cannot capture potential 

asymmetric effects on the inflation rate. Since not all time series exhibit such effects, a test is required to determine 

their presence. If asymmetry is detected, an asymmetric GARCH model will be applied. In the cross-correlation plot 

of the inflation data, significant peaks outside the confidence interval indicate possible asymmetry in the volatility 

process. 

 

Figure 2. Cross Correlation Plot of Inflation Rate 

  Based on Figure 2, it appears that there are bars that exceed the significant limit, which means that there is 

asymmetry in volatility inflation data. Therefore, modeling is done with asymmetric GARCH, namely GJR-

GARCH. 

3. GJR -GARCH Modeling 

To modeling GJR-GARCH (p,q), the best model for inflation data is selected based on the lowest AIC 

values. Table 7 presents the results of the GJR-GARCH model parameter estimation for inflation data. The best 

GJR-GARCH model for inflation data based on the smallest AIC value is GJR-GARCH (2,1).  

Table 7.  Parameter Estimation Results of GJR-GARCH 

Parameter 
(GJR-GARCH(2,1)) 

Coefficient P-value X 0,0013 0,0000* �� 0,0094 0,0000* �� 0,0062 0,0000*  � 0,9401 0,0000* %� -0,1199 0,0000* 

 

Based on the estimation results in Table 7, the coefficient %�	  is statistically significant, indicating the 

presence of asymmetry in the inflation data. Since %�	  is negative (–0.1199), negative shocks (�� , 0) have a 

different effect on volatility compared to positive shocks. This suggests an asymmetric volatility response, although 
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the negative sign implies that negative shocks reduce volatility relative to positive shocks, which is less common 

compared to the typical leverage effect (% > 0). 

4. GJR-GARCH-GA Modeling 

GJR-GARCH-GA estimation uses the best model, GJR-GARCH(2,1). The parameters of the GARCH(2,1) 

model, namely X, ��, ��	, %�,  �	are optimized using genetic algorithm (GA) to obtain the global optimum 

estimation. The first step in estimation with GA is to form an initial chromosome consisting of six genes, namely X, ��, ��	, %�,  � as a solution to the algorithm. The illustration of  the  GJR-GARCH(2,1) chromosome shows in 

Table 8. The GJR-GARCH(2,1) model parameters (ω, α₁, α₁, γ₁, β₁) were estimated using a Genetic Algorithm 

(GA). The estimation process began with a randomly generated initial population of chromosomes, each 

representing a potential solution. The fitness function was defined as 1/RMSE, so that chromosomes with smaller 

RMSE values had higher fitness. 

After calculating fitness values, the Roulette Wheel selection method was used to determine parent 

chromosomes for the next generation, where the probability of selection was proportional to fitness. Crossover was 

then applied using the single-point method with a probability of 0.8, while mutation was performed with a 

probability of 0.1 to maintain population diversity. Elitism was also introduced to ensure that the best chromosomes 

were preserved across generations. 

The evolutionary process of selection, crossover, mutation, and elitism was repeated for 100 iterations until 

convergence was achieved. The final estimates of the GJR-GARCH(2,1) parameters obtained through GA 

optimization are presented in Table 10. 

Table 10. Results of Inflation Parameter Estimation Using GA 

Parameters Estimation X 1.9710 	�� 0.1068 	�� 0.3318 %� 0.5372  � 0.2927 

 

Systematically the equation of ARIMA(2,0,2), GJR-GARCH(2,1)-GA is 

ST � K. PKNO � K. UINQST�O � K. UMUQST�L � K. UNOPVT�O � K. UONNVT�L � VT 
The conditional variance of the residual εt is modeled by 

YTL � O. UIOK � K. OKHMVT�OL � K. QQOMVT�LL � K. NQILZT�OVT�OL �K. LULIYT�OL  

The GJR-GARCH(2,1) model indicates that inflation volatility is influenced by past shocks, with stronger effects 

from two periods earlier. The results also reveal an asymmetric effect, where negative shocks increase volatility 

more than positive shocks, and a persistence effect, although at a relatively low level. 

5. Forecasting Inflation Volatility 

Following the estimation of the ARIMA(2,0,2) – GJR-GARCH(2,1)-GA model, the forecasting 

evaluation was conducted. Table 11 reports the forecasted volatility values for the subsequent 12 periods. 
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Table 11. Volatility Forecast   

Periods Actual GJR-GARCH GJR-GARCH-GA 

T+1 -0.22 -0.9025 -0.8034 

T+2 0.75 1.1699 1.2504 

T+3 0.2 0.0979 0.1635 

T+4 0.09 -0.2171 -0.1488 

T+5 0.16 -0.1845 -0.1118 

T+6 0.06 -0.3923 -0.3278 

T+7 -0.08 -0.5824 -0.5285 

T+8 -0.06 -0.4573 -0.3955 

T+9 0.36 0.3754 0.4625 

T+10 0.16 -0.1073 -0.0054 

T+11 0.17 -0.1526 -0.0691 

T+12 0.63 -0.9853 1.0314 

RMSE 0.3787 0.3383 

MAPE 3.1195 2.4043 

Based on Table 11, the GJR-GARCH-GA model provides more accurate and stable volatility forecasts compared to 

the standard GJR-GARCH model in most of the 12 future periods. This is indicated by the The RMSE and MAPE 

values of the GJR-GARCH(2,1)-GA model are smaller than the GJR-GARCH(2,1) model without using genetic 

algorithm, so that estimation with the GJR-GARCH(2,1)-GA model produces better forecasts than without using 

GA. Therefore, it can be concluded that the GJR-GARCH-GA model demonstrates superior predictive performance 

on this dataset. 

 

Figure 3. Plot of Model Comparison 

Based on the plot, it can be concluded that the GJR-GARCH(2,1) model optimized using a genetic algorithm 

(GJR-GARCH-GA(2,1)) produces forecasts that are closer to the actual data compared to the standard GJR-

GARCH(2,1) model. The GJR-GARCH-GA(2,1) line consistently tracks the actual values more closely throughout 

most months in 2023, which indicates improved forecasting accuracy. 
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CONCLUSION 

In this study, the GJR-GARCH model combined with a Genetic Algorithm (GA) is applied to forecast 

inflation volatility in South Sulawesi. The dataset consists of daily observations from January 2007 to December 

2023. The inflation rate exhibits fluctuating patterns with non-constant variance, as shown in Figure 1. Moreover, 

the data reveal the presence of asymmetry effects (leverage effects), which cannot be adequately captured by 

conventional GARCH models. To address this limitation, the GJR-GARCH model is employed, as it is specifically 

designed to model asymmetric volatility behavior. Considering the complexity of parameter estimation, the Genetic 

Algorithm (GA) is utilized to obtain more efficient estimates. 

The forecasting results using the ARIMA(2,0,2)-GJR-GARCH(2,1) model, with parameters optimized by 

GA, show a lower RMSE compared to the standard GJR-GARCH model. This indicates that the hybrid GJR-

GARCH-GA model provides improved accuracy in modeling and forecasting inflation volatility. 

Furthermore, based on the monthly inflation chart for South Sulawesi, a notable spike occurred in February, 

when the actual inflation rate surged above 1.0, marking the highest point of the year. This sharp increase reflects 

strong inflationary pressures early in the year, primarily driven by rising prices of essential goods and energy, 

including fuel (BBM), rice, and air transportation fares, as also reported by Statistics Indonesia (BPS) during the 

same period. 
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